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Abstract
The dimensions of electronic devices are rapidly decreasing and there is a need for a new
generation of modeling tools that can accurately calculate the electrical properties of devices
where atomic scale details and quantum effects are important. A promising framework for such
calculations is density functional theory within the non-equilibrium Green’s function formalism
(NEGF-DFT). In this paper we present the basic framework and applications of the formalism.
The applications include the calculation of the I –V characteristics of a single molecule
connected with gold electrodes and the spin-dependent electron transport through a
magneto-tunnel junction consisting of MgO layers sandwiched between Fe electrodes.

For the formalism to be applied in semiconductor device modeling it needs to be able to
handle many thousands of atoms. We discuss new developments and future aspects of the
method important for semiconductor device modeling; in particular we show that for important
classes of systems the approach scales linearly with the system size.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: the need for quantum modeling in
the electronics industry

The continuing downscaling of electronics devices poses new
challenges to the semiconductor industry for each new device
generation. At the nanometer length scale there are important
quantum effects and the materials which were working well
in previous device generations do not perform properly at the
nanoscale and new materials need to be introduced. Eventually,
not only the materials but also the basic device operation
principles and geometries need to be revised.

The transition from the microscale to the nanoscale is
challenging the semiconductor device modeling tools and a
new generation of modeling tools which incorporate quantum
effects and describe the atomic scale detail of the device must
be introduced. The need for new modeling tools is detailed
in the modeling section of the International Roadmap for the
semiconductor industry [1].

In this paper we focus on new tools for atomic scale
modeling of the electrical properties of emerging electronic
devices. Such devices may consist of completely new materials
like molecules, carbon nanotubes, nanowires or use new
quantities like the electron spin to process information. These
materials have complex electronic properties that depend

on the detailed device geometry and an accurate quantum
chemical model of the atomic scale geometry is needed. We
will describe the use of non-equilibrium Green’s functions
(NEGF) combined with electronic structure methods to model
the electrical properties of nanoscale devices [2–11]. The
electronic structure model is constructed from first principles
using density functional theory (DFT) within a localized basis
set framework [12]. We will only discuss the formalism for
coherent transport, i.e. it is assumed that the electron only
undergoes scattering events described by the DFT one-electron
Hamiltonian; thus events not included are inelastic scattering
by phonons or dynamical electron–electron interactions. There
is work in progress to extend the method to include such
effects [13].

We will present applications of the method for modeling
the electrical properties of molecular electronics devices and
spin-dependent electron transport in magneto-tunnel junctions.
The examples are for systems with a few hundred atoms and
the calculations have been performed on a single workstation.
However, we will show that the underlying formalism for
the NEGF-DFT calculations has O(N) scaling and with new
proper parallel algorithms and the use of supercomputers it is a
promising approach for studying complete devices with many
thousand atoms.
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Figure 1. Illustration of the geometry of a two-probe system. The system consists of a central region in contact with two electrodes. The
electrodes form a semi-infinite periodic lattice and it is assumed that the central region is sufficiently large that the electron density in the
electrode region has retained its bulk value. The properties of the electrode region can then be obtained from a calculation of an electrode cell
with periodic boundary conditions.

The division of the paper is the following. In section 2 we
briefly introduce the NEGF-DFT approach and in section 3.1
we discuss simulations of electron transport through a
single molecule, while section 3.2 is devoted to modeling
spin-dependent transport through an Fe–MgO–Fe sandwich
structure. In section 4 we discuss work in progress for
extending the methodology to encompass full semiconductor
devices, and in section 5 we conclude.

2. NEGF-DFT model of electron transport in
nanoscale devices

An atomic scale description of an electronic device requires
a detailed model of the interaction between the electrons and
the individual atoms. At the atomic scale such a description
must be based on a quantum mechanical model. The most
fundamental description is through the Schrödinger equation
involving all the electrons and the ionic cores of the atoms.
The main numerical problem with the Schrödinger equation
is that it couples the motion of the electrons and this makes
a general solution intractable. A very popular strategy for
avoiding solving the full Schrödinger equation is using a mean
field (MF) model, where each electron is described as an
independent particle interacting with the MF from all the other
electrons. This is usually calculated through the total electron
density and since the electron density is determined from the
electron wavefunctions the MF approach gives rise to a set of
coupled equations that must be solved self-consistently.

One of the most successful MF approaches is density
functional theory (DFT) invented by Kohn and co-workers
more than 40 years ago [14, 15]. In DFT each electron
is influenced by a MF determined from the total electron
density through a classical electrostatic contribution, the
so-called Hartree potential, and an additional term, the
exchange–correlation potential, which arises from the quantum
mechanical nature of the electrons. The exchange–correlation
potential can only be calculated approximately, and there
is a strong effort to develop new and improved exchange–
correlation functionals. Popular choices are the local
density approximation (LDA) [16] and generalized gradient
approximation (GGA) [17] to DFT, and these approximations
have proved very successful in describing the energetics of

molecules and crystals. In this paper we use DFT to model
electron transport properties and it will be important to have a
good description of the electron energy levels. The LDA and
GGA are known to underestimate energy gaps in insulating
materials and results based on these approximations must
therefore be analyzed with care in order to judge the validity
of the results. Recent progress in the development of DFT
functionals [18] seems promising for correcting this deficiency
of the LDA and GGA.

The NEGF-DFT description of electron transport is based
on the Kohn–Sham equations which introduce an equation of
motion for each electron through the one-electron Schrödinger
equation [

− h̄2∇2

2m
+ V eff(r)

]
ψα(r) = εαψα(r), (1)

where ψα(r) is the wavefunction of the electron in orbital α
and V eff(r) is the DFT mean field potential from the other
electrons.

The DFT equations have mainly been solved for isolated
systems like molecules where fixed boundary conditions can be
applied or periodic systems like crystals where it is possible to
use periodic boundary conditions. In this paper we will discuss
device geometries where two crystalline materials are coupled
together through a central region, as illustrated in figure 1.
Such a system we call a two-probe system. To treat the two-
probe system we divide it into three regions, left electrode,
central region and right electrode. It is assumed that the
electrode parts have bulk properties and for metallic electrodes
this condition is easily met by including a few metallic layers
in the central region. The first step in the two-probe technique
is to calculate the properties of the electrodes using standard
DFT techniques for periodic systems. The solution for the
electrodes then sets up boundary conditions for the central
region and the DFT equations for this region is then solved
self-consistently.

In order to be able to decompose the one-electron
Schrödinger equation, (1), into three regions, we expand the
one-electron wavefunction in basis functions, φi(r), that are
localized around each atom,

ψα(r) =
∑

i

cαiφi(r), (2)
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where cαi are the expansion coefficients. (1) can now be
written as a matrix equation

H̄cα = εα S̄cα, (3)

where cα is a vector of the expansion coefficients for orbital
α and the Hamiltonian H̄ and overlap matrix S̄ are defined
through the integrals

Hi j =
∫

V
φi(r)

[
− h̄2∇2

2m
+ V eff(r)

]
φ j (r) dr, (4)

Si j =
∫

V
φi (r)φ j (r) dr. (5)

The Hamiltonian and overlap matrices are block
tridiagonal matrices, and can be separated into diagonal blocks,
HLL, HCC, HRR, and couplings HLC, HRC. As discussed above,
the electrode region has periodic boundary conditions, and its
properties are calculated by conventional DFT methods for
periodic structures. To calculate the electron density of the
central region we need to calculate the GCC part of the retarded
Green’s function, defined through matrix inversion,

GCC(ε) = [(ε + iδ)S̄CC − H̄CC − �̄L
CC − �̄R

CC]−1, (6)

where δ is an infinitesimal and the self-energies, �̄L
CC, �̄R

CC,
describe the coupling between the central region and the
electrodes. Several efficient algorithms exist for calculating
the self-energies from the self-consistent Hamiltonian of the
electrodes [19, 20].

In the equilibrium situation where there is no applied bias
the density matrix, Di j , can be obtained from the retarded
Green’s function through

Di j = 1

π

∫ μ

−∞
Im[Gi j(ε)] dε, (7)

where μ is the equilibrium chemical potential of the system.
In the non-equilibrium situation where there is an applied bias,
V , the chemical potentials in the left and right electrode are
different, and related by μL − μR = eV . In this case it is
necessary to use NEGF theory, and the equation for the density
matrix takes the form

D̄ = 1

π

∫ μL

−∞
Ḡ(ε) Im[�̄L]Ḡ(ε)† dε

+ 1

π

∫ μR

−∞
Ḡ(ε) Im[�̄R]Ḡ(ε)† dε. (8)

From the density matrix we can obtain the electron density
through

n(r) =
∑

i j

Di jφi (r)φ j (r). (9)

The different steps in the algorithm are summarized in table 1
and we see that the calculation of the density closes the self-
consistent loop.

With the self-consistent DFT solution we have an effective
one-electron description of the system and we will calculate
the electron transport properties by using the Kohn–Sham
Hamiltonian for propagating each electron. The propagation
is quantified by the transmission coefficient. TL→R(ε), gives

Table 1. The table summarizes the steps involved in solving the
self-consistent DFT Kohn–Sham equations for a two-probe system.
For each step we summarize the input and output of the algorithm
and its computational complexity when implemented using localized
basis functions. The complexity is given in terms of the number of
atoms N and the area of the electrode cell A.

Step Algorithm Complexity

1 n(r) → V eff(r) O(N log N)
2 V eff(r) → H̄ O(N)
3 H̄ → Ḡ O(N3),O(N A3)

4 Ḡ → D̄ O(N)
5 D̄ → n(r) O(N)

the total number of states propagating from left to right at a
given energy. Due to time-reversal symmetry of the underlying
quantum mechanical equations the transmission coefficient for
states propagating from right to left will be similar, TR→L(ε) =
TL→R(ε), and we therefore drop the subscript and use T (ε).
In order to obtain the electrical current we need to weight
T (ε) with the electron occupation in the electrode reservoirs,
nF(ε). We will assume that nF(ε) can be described by a Fermi
distribution, and the total current is given by

I = e

h

∫ ∞

−∞
T (ε)[nF(ε − μL)− nF(ε − μR)] dε. (10)

By linear expansion around μ = μL = μR, it is easy to show
that the conductance, σ , is given by

σ = e2

h
T (μ). (11)

3. Applications

In the previous section we gave a brief overview of the
NEGF formalism for calculating electron transport. There exist
several independent implementations of the approach [2–11]
with slight differences in technical implementations. In the
following we will present the application of the formalism
with two examples obtained with the TranSIESTA [2] and
the related Atomistix Tool Kit (ATK) implementation, and
further technical details of these implementations can be
found in [2]. The first example shows the calculation of
the I –V characteristics of a molecule coupled with two
metal electrodes [21]; in the second example we calculate
the tunneling magnetoresistance (TMR) of different magneto-
tunnel junctions [22].

3.1. Electrical properties of a Tour wire connected with
Au(111) electrodes

In this section we will present calculations of the electrical
properties of a dithiol phenylene–ethynylene oligomer,
popularly called a Tour wire, between two gold electrodes [21].
A schematic of the geometry is shown in figure 2(a), and the
atomic details of the system are similar to figure 1 except that
the phenyl ring is substituted with the phenylene–ethynylene
oligomer. Figure 2(b) illustrates the electronic structure of
the LL, CC and RR parts of the system, which gives rise to

3
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Figure 2. (a) Schematic of a Tour wire connected with two gold electrodes. (b) Illustration of the electronic structure of the system. (c) The
contour line shows the voltage drop between the gold surfaces for an applied bias of 1 V and the iso-surface shows the induced density due to
the applied bias. (d) Calculated current–voltage characteristics. The inset shows the transmission coefficient as a function of the electron
energy, and each curve corresponds to different applied biases. The dark central part (blue online) of the curves shows the energy range within
the bias window.

metallic bands in the electrodes and discrete levels within the
molecule. The key quantity to be calculated is T (ε), and it
gives the fraction of electrons transmitted from left to right
through the central region. T (ε) is related to the number of
propagating waves in the electrode and the available number
of transmission channels in the central region. The inset in
figure 2(d) shows T (ε) as a function of the electron energy for
different applied biases. The dark central part (blue online)
of each curve shows the bias window, i.e. the energy region
between the left and right chemical potentials. The bold
(red online) middle curve corresponds to the equilibrium case
where there is no applied bias. For each curve we define
the zero energy as the average chemical potential of the two
electrodes. There are two main peaks, one peak above the zero
energy and one below. The position of the peak at positive
energy is correlated with the energy of the lowest unoccupied
molecular orbital (LUMO) of the Tour wire, and the position
of the peak at negative energy is correlated with the energy of
the highest occupied molecular orbital (HOMO). Thus, these
peaks correspond to easy transmission of electrons from left to
right, since at these energies an electron can use the molecular
orbitals of the Tour wire to propagate through the device. We
also note that the different curves are rather similar and the
external bias therefore only has a small effect on the scattering
properties of the device.

From T (ε) it is easy to calculate the electrical current
using (10). Note that only energies within the bias window
contribute to the integral. The curve in figure 2(d) shows
the calculated I –V characteristics. The curve has a linear
slope and an onset around 2 V. From inspections of T (ε) we
see that the onset is related to the HOMO entering the bias
window. Thus, the current is related to transmission through

the HOMO and we may conclude that the molecule behaves
as a hole conductor when contacted with gold electrodes. The
zero bias conductance of the molecule is 2.0 μS, similar to
calculated values for a closely related molecule (OPV3) [23],
and in excellent agreement with the recent experimental result
of a conductance of 1.5 μS for OPV3 [24].

The contour plot in figure 2(c) shows the voltage drop
through the system for an applied bias of 1 V. It can be seen that
the voltage drop is nearly linear, and the molecular response to
the applied bias is similar to that of a dielectric material [21].
The dielectric constant of the phenyl rings is slightly higher
than that of the ethynylene bonds, and we see that the contour
line spacing is larger and the electric field thereby smaller
inside the phenyl rings compared to the rest of the molecule.

3.2. Spin-dependent transport in magneto-tunnel junctions

In our next example we will investigate the spin-dependent
transport in magneto-tunnel junctions (MTJ). A MTJ consists
of an insulator sandwiched between two magnetic materials,
and we will calculate how its resistance depends on the relative
magnetization directions of the two electrodes. The figure of
merit is the tunnel magnetoresistance

TMR = σ↑↑ − σ↑↓
σ↑↓

, (12)

where σ↑↑ is the conductance per unit area when the
electrodes are magnetized in the same direction, and σ↑↓ is the
conductance when they are oppositely magnetized.

In 2001 it was predicted by Butler et al that MgO layers
between Fe electrodes could display TMR values higher than
1000% [25]; more than one order of magnitude higher than
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a)

c)Majority Minorityb)

Figure 3. (a) The atomic geometry of the Fe–MgO–Fe system with five MgO layers. (b) Transmission coefficient of majority electrons at the
Fermi energy as a function of the parallel momentum; (c) a similar plot but for minority electrons.

for AlO2 based devices which were popular at that time. After
refining the deposition process, experimentalists found in 2004
that MgO based MTJs show TMR in excess of 180% [26]
and this has sparked a large focus on MgO based materials
for spintronics applications. In the following we present
calculational studies of the TMR of MgO based MTJs and the
effect of different interface layers on the TMR [22].

Figure 3(a) shows the geometry of five MgO layers
sandwiched between two Fe electrodes. The structure is
described using a periodic (1 × 1) cell in the directions
parallel with the interface (denoted x , y directions). In
the perpendicular direction, the z direction, the system is
divided into a central region containing the five MgO layers
surrounded by three Fe layers to each side, and a left and right
electrode region with three Fe layers each [22]. The periodic
boundary conditions in the x , y directions conserve the parallel
momentum of the electron and the transmission coefficient,
T (ε,k‖, σ ), depends on three quantum numbers, energy, ε,
parallel momentum, k‖, and electron spin, σ .

Figures 3(b) and (c) show T (ε,k‖, σ ) for electrons at the
Fermi energy, ε = εF, and with parallel magnetization of
the electrodes. Figure 3(b) shows the result for the majority
electrons, and it shows a strong dependence on the electron
parallel momentum, kx, ky . The plot has a bell shaped form
with maximum at k‖ = 0. This shape can be understood from
a WKB theory of transmission through a barrier

T (ε,k‖) ∝ exp

(
−

√
2m0

h̄2
(ε − εv)+ k2

‖

)
, (13)

where m0 is the effective mass and εv is the valence band
edge of the insulator. This equation describes that the energy

difference ε − εv sets up an effective barrier for the electron
tunneling through the insulator.

For the minority electrons the situation is very different,
as illustrated in figure 3(c). In this case there is no single peak
in the transmission spectrum and the overall transmission is an
order of magnitude smaller than for the majority electrons. The
different behavior can be understood from the different band
structure of the minority electrons compared to the majority
electrons. At k‖ = 0 the majority electrons have s-like
character and this symmetry is only weakly damped when
propagating through the MgO insulator. The minority bands
have d-like symmetry and this symmetry is strongly damped
when propagating through the MgO layer, and thus there is
no central peak at k‖ = 0. Instead there are transmission
spikes scattered around in the Brillouin zone and these are
related to interface states, i.e. k-points where there is a large
density of states in the central region and therefore an increased
probability of tunneling.

The above discussion shows that the majority electrons
dominate the conductance for parallel magnetization of the
electrodes. To obtain the TMR this conductance must be
compared with the conductance for anti-parallel magnetization
of the electrodes. In this case a majority state of one electrode
is coupling with the minority state of the other electrode. Due
to the different symmetries of the minority and majority bands,
the conductance at k‖ = 0 will be strongly suppressed and
the conductance thereby much smaller than for the parallel
case. The result of such a calculation is reported in [22], and
the calculated TMR values for a number of different interface
structures are summarized in table 2.
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Table 2. The table summarizes the TMR calculated using (12) and
area normalized resistance, R A, of the Fe–MgO–Fe system with
different interface layers between the left Fe electrode and the
five MgO layers [22].

Structure TMR (%) R A (
 μm2)

Fe–MgO–Fe 2302 21
Fe–FeOMgO–Fe 90 317
Fe–AuMgOAu–Fe 1232 5
Fe–NiOMgO–Fe 58 171
Fe–MnOMgO–Fe 903 735

For the ideal Fe–MgO–Fe system the calculated TMR
value is 2302%. This is one order of magnitude higher than
measured experimentally [26]. A very likely origin of this
discrepancy is that the idealized theoretical structure is not
realized experimentally. In particular, the interface structure
between the Fe electrode and the MgO interface plays an
important role. Upon growth of the MgO layers on top of
the Fe electrode, the deposited O atoms may oxidize the Fe
electrode [27]. A simulation of the effect of a single FeO layer
between the Fe electrode and the MgO is reported in table 2
and it reveals that such a layer will strongly reduce the TMR
value.

A way to avoid the degradation in the TMR due to the
oxidation of the Fe electrodes is to put a buffer layer between
the electrode and MgO. Simulations of the effect of different
buffer layers are shown in table 2 and such simulations may
guide experimentalists in their search for the geometries with
optimal performance.

4. Full semiconductor device simulation

The simulations in the above examples have been limited
to rather small systems compared to the scale of CMOS
transistors. In order to apply the methodology to full
semiconductor device simulations, it must be able to handle
many thousand atoms. The extension of the methodology
to such large systems is only possible if the computational
complexity scales linearly with the system size. In table 1
we list the scaling of the different computational steps in the
methodology. We see that except for the Green’s function
calculation all other parts show nearly linear scaling (N log N
scaling is in practice similar to linear scaling). Thus, for large
systems the calculation of the Green’s function will be the time
limiting part of the simulation.

The so-called recursion formula [28–30] provides an exact
approach for calculating the Green’s function and this formula
scales as O(N A3) where N is the number of atoms and A
the area of the device perpendicular to the transport direction.
For a cubic cell we have A ∝ N2/3 and the overall scaling
is O(N3). However, for long and thin devices the A3 scaling
can be neglected, and the Green’s function approach allows for
exact O(N) electronic structure calculations. A recent variant
of the recursion method improves the efficiency when used for
calculating the transmission coefficient of the device [31].

It can be shown that the Green’s function approach is
equivalent to a wavefunction picture where the density is

obtained by calculating the eigenstates of the system [32]. The
eigenstates of the two-probe systems are most conveniently
described using the so-called scattering states. A scattering
state has an initial state in one of the electrodes and describes
the electron propagation through the device, part of the wave
being reflected and another part being transmitted. At a
given energy there are only very few propagating states, the
remaining states being evanescent waves which quickly die
off inside the device. This observation may be exploited
for developing new superfast approximate algorithms. A
promising step is the development of a new iterative scheme
for calculating the self-energy matrix by selecting only
propagating states, and this approach is more than one order
of magnitude faster than currently used algorithms [20].

5. Conclusion

We have presented a quantum mechanical approach based
on NEGF-DFT for modeling electron transport in nanoscale
systems. The methodology has been used for studying the
electron transport in emerging electronic devices and spin-
dependent electron transport across interfaces. In order to
extend the methodology to full semiconductor device models
there is a need for new more efficient algorithms. There is
extensive research into such new more efficient and parallel
algorithms and the simulation of the electrical properties
of systems comprising thousands of atoms seems feasible
in the near future. Furthermore, new developments within
NEGF which include interaction between the electrons and
phonons [13] as well as photons [33] show promise for the
NEGF-DFT approach to be the backbone of a new generation
of semiconductor device modeling tools.
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